Biogas generation in Thailand

Cassava starch production is a large industry in Thailand. It serves many purposes and is among other things used for food, animal feed and industrial purposes. As with all production, it however has its downsides. The main one being that the industrial process generates large amounts of wastewater, which emits methane when stored in open lagoons, as is the norm.

Capturing methane

GoClimate and its members have contributed to the Gold Standard project CYY Biopower Wastewater Treatment Plant in Thailand. By installing a closed anaerobic system, the methane emissions (a greenhouse gas 21 times more potent than CO2) are captured. Methane has a shorter lifetime in the atmosphere than carbon dioxide – only twelve years, compared to up to hundreds for CO2 – so cuts in methane will limit temperature increase faster than cuts to carbon dioxide.

Double gain

The captured methane is reused as biogas. The biogas can be used both as thermal oil replacement in the starch manufacturing process and also for generating clean energy for own use and sale to the grid. The emissions of the potent methane are avoided, and the energy sourced from the burning of fossil fuels is displaced.

Social sustainability

As all Gold Standard certified projects, this project is also socially sustainable. The project has significantly improved local air and water quality and the carbon revenue it generates provides jobs for locals, while also supporting social and educational activities. The clean wastewater is used to irrigate nearby fields and allows fish farming, enabling local communities to increase their income.

The SDGs and the numbers

The project contributes to the Sustainable Development Goals number 6,7,8 and 13.

97,000 tonnes of CO2 are mitigated annually, on average. Based on that the world average CO2 emissions per person was 4.9 tonnes (2019), this corresponds to reducing the CO2 emissions from nearly 20,000 people each year.

Clean Electricity from the Indian Sun

India is the world’s fourth largest emitter of carbon dioxide. With its rapid population growth, energy demands continue to increase. This is why GoClimate has chosen to support a large-scale solar plant – the Gold Standard certified Greenko Renewable Energy Project, in Madhya Pradesh in central India.

India is heavily dependent on fossil fuels where coal is the largest source of energy. It stands for 70% of the country’s energy. For the climate, a shift towards more renewable energy is crucial.

The solar plant in numbers

With its annual average production of 328,000 MWh, the Greenko project has the capacity to supply nearly 400,000 people in India with clean energy every year. The solar plant could in other words generate enough electricity to cater for a middle sized city.

Each year, 308,000 tonnes CO2e on average are mitigated. In 2020 (a year incused by the pandemic) the CO2 emissions per capita in the world were 4.62 tonnes. This means that the climate benefits from the solar plant are equal to avoiding the emissions caused by nearly 70,000 people.

How the location of the solar plant is chosen

This large scale solar plant generates green electricity that goes directly to the Indian grid. The Gold Standard certificate is a hallmark and an insurance that the location for the solar panels is carefully chosen. They are often installed in desert-like environments where there is a lot of radiation from the sun and little vegetation, where the panels do not negatively affect the local ecosystem. No forests shall be cut down to make space for a solar plant, neither shall arable land be used.

New jobs in the local community

When a project of this scale is to be built in a small village, it is fundamental that they develop a good relationship with the local community. All Gold Standard certified projects have a grievance mechanism which enables community members to register and voice concerns.

On top of the project’s climate benefits, this project contributes towards the local economy through the creation of 12 jobs and has conducted 6 trainings to educate staff.

Efficient Cookstoves in Central China

– less wood and better health

GoClimate is happy to have contributed to reducing over 1,000 tonnes of CO2e emissions together with its members. This has been done through supporting the Gold Standard WWF Meigu High Efficient Cook Stove Project. The project is located in the Shaanxi Province in the Central China mountains. It contributes to decreasing deforestation and protecting a giant panda habitat. In addition, the local community benefits from improvement in health and time savings. 

How is it done?

The project is based on a process of reconstructing inefficient built-in stoves for cooking and heating into being 70% more efficient. As the thermal efficiency is improved, the new cookstoves use substantially less woodfuel. Another benefit is the chimney that filters out toxic smoke.

The project operates in the Ningshan County towns of Huangguan, Xingchang and Simudi. Theses towns are near Huangguanshan Nature Reserve in Ningshan County in the Shaanxi Province. Due to the inconvenient traffic and the weak power supply system and high electricity price, there is no other power solution to replace the wood consumption. Making the use more efficient is of utmost importance.

For the planet

Not only is the climate helped by the 1,000 tonnes CO2e mitigated as less wood needs to be collected and burnt, but the deforestation pressures on the local giant panda habitat are eased. For decades, the deep mountain communities of Shaanxi’s Ningshan County in Central China have collected their woodfuel from the nearby Huangguanshan Nature Reserve. To lessen deforestation is important. Forests help keep our climate stable and regulate our water supply, in addition to providing home to many species. The crucial giant panda habitat is currently threatened and  violated, harming the rare pandas and other wildlife. Despite reports on the giant panda population slowly increasing, it remains one of the rarest, most vulnerable bears in the world. Habitat preservation is therefor key. Along with the climate crisis, the loss of biodiversity is one of the current and most severe threats to the planet. 

Gains for the local community

Every year, indoor air pollution causes many deaths. Women and children being the ones most involved or exposed to this environment are worst affected. The project has the potential to make everyday life a little bit safer for the local community through decreased indoor toxic smoke.

Furthermore, time is freed up for local residents to focus on more productive tasks, like working for income. The chopping and collecting of woodfuel is done faster, when less is needed. 

Geothermal energy on Sumatra, Indonesia

Ulubelu Unit 3-4 geothermal power plant, located on Indonesian island Sumatra, generates clean electricity going straight into the grid.

This project – apart from producing clean electricity and thus reducing greenhouse gas emissions – also contributes to Indonesia’s sustainable development. Indonesia needs to become less independent on fossil fuels, both when it comes to energy consumption and to export. It gives local employment opportunities and boosts the economy.

The great potential of geothermal energy

Geothermal energy is a type of renewable energy sourced from the Earth’s core, by using the heat stored in rocks and fluids. The difference between the temperature in the core and on the surface of the Earth drives a continuous conduction of thermal energy towards the surface, creating a source of renewable energy that is harmless to the planet

Geothermal energy is a very good way to complement other renewable energies, like wind and solar, because it offers a constant supply that is not dependent on the weather. It is therefore considered a baseload, or readily dispatchable power.Energy can be sourced at all hours and under almost any weather conditions, it is reliable, efficient, and cost efficient on a long term basis.

This kind of energy source  holds a lot of potential but remains relatively undeveloped. This is due to both the high initial cost of geothermal exploration and also official Indonesian legislation, which until 2014 classed geothermal exploration as a mining activity prohibited from forest and conservation areas. In fact, about three quarters of the total final energy consumption in Indonesia in 2018 came from non-renewable sources. In addition, coal is Indonesia’s biggest export product, and there is a clear need for Indonesia to reduce the risks of relying on fossil fuel exports. Carbon sales is an important source of revenue, making projects such as Ulubelu Unit 3-4 fiscally viable, one of the reasons why we at GoClimate are so excited to be supporting this project!

The power plant

The Ulubelu Unit 3-4 geothermal power plant is located at the southern tip of Sumatra, in the Lampung province. Indonesia is home to roughly 40% of global geothermal resources. In South Sumatra, the potential of geothermal energy reaches up to 2,095 megawatts, equivalent to 10% of the country’s total geothermal energy.

The power plant has been developed by the company PGE. The capacity of Ulubelu Unit 3-4 is 2 x 55 MW. On average over 860 GWh of clean, renewable electricity is generated annually for Indonesia’s Sumatra Interconnected Grid.

So how is the heat from the centre of the earth turned into electricity? The way it works is that steam collected from the geothermal field is sent to the power plant. It gets separated from condensate and fed into steam turbine generator systems with a net capacity of 2 x 55 MW. Next, the condensate is collected and returned to the geothermal field to maintain groundwater supply. Electricity produced in this process is sold to state-owned electricity company, Perusahaan Listrik Negara (PLN), for distribution to the grid.

The benefits of this climate project

As well as producing clean electricity and reducing greenhouse gas emissions, the Ulubelu Unit 3-4 geothermal power plant contributes to Indonesia’s sustainable development. The geothermal power plant diversifies Indonesia’s sources of electricity generation, helping to facilitate its low-carbon energy transition. By improving the operation of the existing geothermal field, the project increases community development, while local investment creates local employment opportunities and boosts the economy. 

Some of the added values for the local community include the building of roads, in areas where the infrastructure was previously poor, and other community development projects, such as water supply, mosque improvements, and school upgrading.

Climate Impact and Safe Drinking Water with Nazava Water Filters

Together with our amazing members, GoClimate have now offset another 9087 ton CO2eq in the Gold Standard certified project Nazava Water Filters.

According to the World Economic Forum, lack of access to safe drinking water is one of the biggest threats to humanity today. The Nazava project is a social enterprise that sells affordable ceramic water filters to low-income households in Indonesia (where the lack of clean water is a wide-spread problem) enabling access to safe drinking water. The project also leads to reduced CO2 emissions as well as a number of other benefits, both on a global and a local level.

Thank you to everyone who has contributed to this!

Difficulties for low-income households to get water

The positive impact safe drinking water has on public health is pretty obvious. It prevents disease and even death. The conventional methods for obtaining drinking water involve fetching, transporting and storing water and then boiling it to make it safe enough to drink. The fact that the water often needs to be transported a long way and to then be stored for a long period of time, means that the risk of it being contaminated is large, even if the water was clean at the point of fetching. Boiling is an energy intensive and time-consuming purification method, often involving burning wood or charcoal. In cases where fetching drinking water is not an option, low-income households are left to spend money on buying water, leading to an unsustainable financial situation.

The Nazava Water Filter project saves CO2 

The Nazava Water Filter project leads to a reduction in GHG emissions, as burning wood or fossil fuel for cleaning water is omitted. The project activity has the potential to give an annual average CO2 emission reduction of up to 372,774 t CO2e over a 10 year period. This yearly reduction in energy is comparable to one year’s CO2 emissions from 5 000 Swedish households.

The Filter

The technology used for this specific filter is a ceramic type that produces water of safe drinking water quality. The Nazava Water Filters remove 99.9% of bacteria as tested by WHO – a result honoring the name Nazava, which is arabic for “cleanliness”. The filters are easy to use and sold at an affordable price, making them accessible for the low-income households affected.  The filters can be used thousands of times before they need to be replaced, making this technique a highly sustainable one.

Other important benefits

The positive impact of access to safe drinking water and the great climate impact is probably pretty clear by now, but the Nazava project keeps on giving with it’s many other social and economic benefits!

Not having to carry water a long way reduces the risk of wear and tear. Not having to boil water reduces the indoor air pollution from burning wood, which is a health risk important to avoid.

The project also creates value for the local community in important ways. Buying and using the filters, low-income households saves the cost for buying wood or water, and as well as saves the labour spent on fetching and preparing the water. User surveys show that this is welcomed as a considerable advantage and the project has been well received. 

The selling and distribution is carried out by a network of informal resellers or micro-entrepreneurs, many of which are women, working under the brand name Nazava Water Filters. 

The Nazava project has a positive impact on many of the UN Sustainability Goals – numbers 1, 3, 5, 6, 8, 13, and 15 (No poverty, Good Health and Wellbeing, Gender equality, Good Health and sanitation, Decent work and economic growth, Climate action and Life on land).

More support to wind energy in Aruba

We have now offset another 50,000 ton CO2eq in a Gold Standard certified project! Thank you for taking part in this!

Cactus overlooking the energy production

This is our project

Aruba is one of the islands moving towards reduced dependency on fossil fuels and increased share of renewables. The first initiative for wind energy production on the island is the Wind Park Vader Piet N.V, which we are supporting through the purchase of carbon credits! This is the second time we support this project, so find the first blog post about the project HERE.

This wind park consists of 10 wind turbines that are located on an uninhabited part of the island. With a production capacity of 3 MW each, these turbines supply 12-14% of the total energy needed on the island! Since all energy consumed before the implementation of this project came from fossil fuel, the carbon intensity of the electricity available on the island was very high. Fortunately, Wind Park Vader Piet N.V has instigated a change for the better.

More support from GoClimate

We purchased credits (the proof of avoided emissions, expressed in tonnes of CO2) from this project last year in September, and now decided to do a second purchase. The climate projects issue new credits every year, corresponding to the amount of avoided emissions they can prove each year. Hence, with the kind of credits that we purchase from Gold Standard certified projects, we know that the emissions have already been avoided.

The continuous support that the project receives from selling credits every year makes sure that they can, for example, pay back loans that they had to take to build the wind power plants, and ensures the financial sustainability of the project. When the project is planned, this financial support from selling credits is taken into account in the economic balance. The project developer has to show that without this economic support, the project would not be financially feasible. This is what is referred to as ‘Additionality’ when we talk about climate projects.

Imported wings for the wind power plants came by boat to Aruba

What are the larger implications?

Vader Piet has permission to sell credits for 10 years. This has been an interesting time for the island Aruba. We have been talking to the electricity company on the island, WEB Aruba N.V., on what this has meant for them, and this has been proof that there is more that can be done in the area of renewables. It is especially impactful when we can support a project that is the first of its kind in a place, such as this one.

We have previously also supported the Sidrap Wind Energy Project, the first wind power park in Indonesia. This is important both for the public, to see for themselves what a wind energy park can do. Moreover, provides a great learning opportunity for local professionals to learn new skills, which can be replicable in future projects. Aruba is now in the planning stage of a second wind power plant, and we are so exited to be a part of that story!

Read more about the project in the Gold Standard Registry

A big thanks to all of you for enabling this development!

Do you want to contribute to this, and other similar projects? Calculate your carbon footprint and start your offsetting today!

Supporting a Wind Power Project in the Caribbean

We have now offset another 50,000 ton CO2eq in a Gold Standard certified project! Thank you for taking part in this!

The Caribbean is a region heavily dependent on fossil fuels, while at the same time it’s a particularly promising place for renewable energies with abundant sun and wind conditions. Demand is comparatively low because the islands have small populations, which means that small scale energy solutions have the capacity to cover a large share of the energy needs.

Vader Piet N.V. Wind Park

This is our project

Aruba is one of the islands moving towards reduced dependency on fossil fuels and increased share of renewables. The first initiative for wind energy production on the island is the Wind Park Vader Piet N.V, which we are supporting through the purchase of carbon credits!

This wind park consists of 10 wind turbines that are located on an uninhabited part of the island. With a production capacity of 3 MW each, these turbines supply 12-14% of the total energy needed on the island! Since all energy consumed before the implementation of this project came from fossil fuel, the carbon intensity of the electricity available on the island was very high. Fortunately, Wind Park Vader Piet N.V has instigated a change for the better.

Plans for the future

The national energy producer, WEB Aruba, made a commitment which increased the share of renewables to 18% in 2018, and reduced the fossil fuel consumption by 40%. Moving forward, the goal is to reduce the fossil fuel consumption by a total of 67% and to increase renewables to a total of 40% by 2022. After the first wind park was built, a first solar park has also been installed and another wind park is in the development phase.

Why not 100% renewable today?

A challenge that Aruba and other small island nations is facing when transitioning to renewables is the grid stability. Wind and solar are intermittent energies, which means that energy is produced during certain times of the day when it’s sunny or windy. However, this doesn’t always correspond with the time that the energy is needed. In some cases, energy use in industries can be rescheduled to match peak energy availability hours, but for household electricity this is much harder.

To manage this, one option is to invest in energy storage such as batteries, and another one is to use a base load energy that can be adjusted to produce energy when demand is high and renewable production is low. In some cases, this can be done with geothermal energy (like our project Dora II in Turkey), more common is hydro power, nuclear energy or fossil fuels. WEB Aruba is working with a commitment to resolve this, taking into consideration that the development has to happen over time in order to maintain grid stability as infrastructure needs to keep up. It is also crucial to keep energy prices affordable to the local population. In Europe and other places, this challenge is cushioned by our interconnected grids, where energy surplus can be sent to a neighboring country, and energy can be purchased from where the production is the greenest in the moment.

Read more about the project in the Gold Standard Registry

Vader Piet N.V. Wind Park is located far away from the residents of the island

A big thanks to all of you for enabling this development!

Do you want to contribute to this, and other similar projects? Calculate your carbon footprint and start your offsetting today!

Supporting a Solar Energy Project in India

We have now offset another 25,000 ton CO2eq in a Gold Standard certified project! Thank you all GoClimate members for taking part in this!

The climate benefits of this 70 MW Bhadla Solar Power Plant

We decided it was time for another solar energy project, in Rajasthan, the northwestern part of India. The main purpose of this project is to produce clean electricity through photovoltaic (PV) solar panels. This is a large scale solar project. It has an installed capacity of 70 MW, generating 122,108 MWh per year.

Large scale solar PV plant in Rajasthan, India

To give you an idea of how much electricity that is – an average American home uses about 7,200 kWh per year. This project could support 16,960 American homes yearly. But as an average Indian household uses only about 1000 kWh, this equals the annual electricity consumption of 122,108 homes! Add to that that there are almost twice as many people per household in India compared to the US (2,6 compared to 4,9). This amount of electricity supplies a population of 44,096 Americans or 598,329 Indians!

Rows and rows of solar cells out in the desert

In supplying all of this clean energy, the people in this region don’t have to use fossil fuels such as coal or oil to generate electricity anymore. This is still very common in India. Coal is still the most used source of energy. About 9 percent of the energy comes from renewable sources. The share has grown exponentially, from 3,72 percent in 2014-2015. We are so excited to be a part of this positive trend! Thanks to these large investments, we help push down the prices of this clean technology, making it more affordable all over the world.

The benefits for the local community

Improved school attendance

This project has made significant contributions to strengthen the local community on their way to meet the sustainable development goals. In summer, when temperatures rise to 40 degrees Celsius in the area, up to fifty percent of students would not attend school. This is due to the unreliable electricity supply not guaranteeing adequate indoor temperatures. Now, the school attendance is almost 100 percent in summer. Moreover, the company running the project has supported the construction of improved toilets, a classroom, and a digital corner with computers and a projector. The local youth thus have better learning opportunities, and adults have also been supported with literacy sessions.

Supporting women’s developement

A Self-Help Group for women has been founded, where the women learn new skills, primarily related to tailoring and sewing. The women are also given literacy training, which they describe as a big change in their lives.

Self-Help Group for women, where they learn new skills

New clean water facilities

The company in charge of the project has also installed a water ATM in the village, and supplied the local police station with access to clean drinking water. Again, as the temperatures get very high in the summer, this makes a big difference to the locals.

These are only a few examples of the many small initiatives through which the project participant support the local community.

Locals using the newly inaugurated drinking water facilities

The importance of local participation

When a project of this scale comes into a small village, it is fundamental that they develop a good relationship with the local people. There has to be mutual trust and respect for the project to run smoothly, which entails that the project listens to the needs of the locals. That is how they can ensure that they provide what the locals actually want for themselves, and makes sure they feel ownership over their development. Therefore, we are so happy to support projects like this, because it recognizes and actively contributes to multiple aspects of sustainable growth.

Read more about the project in the Gold Standard Registry or in the CDM Registry

Want to contribute to this, and other similar projects? Calculate your carbon footprint and transition to a climate neutral life today!

Belen Wind Power Plant

We have now offset another 50,000 ton CO2eq in a Gold Standard certified project! Thank you for taking part in this!

Renewable energy has to make up a larger share of the market globally, which is why we are now financing the Belen Wind Project in Turkey. The major purpose of the project activity is providing electricity from renewable sources to the rapidly growing Turkish electricity market.

The project is expected to generate about 135,000 MWh of electricity per year and prevent approximately 74,444 tonnes of CO2 emissions annually compared to the baseline scenario. Even though wind is increasing in Turkey, there is a heavy reliance on fossil fuels such as oil and coal, and the share of natural gas has grown to reach the same proportion as the other sources. We want to finance this kind of projects to show that there is support for sustainable energy, and spread awareness of the feasibility of better alternatives.

This project consists of an installation of 16 wind turbines, each having a capacity of 3000 kW, in Belen, on the Southeast Mediterranean coast of Turkey. The wind farm provides a total capacity of 48MW and is connected to the national grid. The project employs state of the art technology and installed high capacity 3MW turbines instead of 1.5MW turbines that used to be installed in the earlier days of wind energy developments in Turkey. These new turbines enable better use of the wind potential with a reduced project footprint area, minimising the impact on the natural environment.

It is worth mentioning that if not prepared and designed properly, wind energy can have negative environmental impacts. This is why it is important to do a so-called Environmental Impact Assessment. As we purchase credits from projects certified by Gold Standard, there has been a rigorous control of the risks as all projects have to comply with the “Safeguarding Principles and Requirements” . This covers human rights, gender issues, corruption, water and land use, and other potential impacts. Another important part of the project preparation is the stakeholder consultation, which is also documented in Project Design Document. 

For this project in particular, it is described in the Project Design Document that ”…some trees will be cut in order to enlarge the road to the site and to clear the surroundings of the turbines. However; it was assured that new plantation will be done in return by local Forestry Management”. Other issues addressed in the preparation phase was the concern for bird migration in the area, and potential impact from waste and water usage during the construction phase. Having this information available is mandatory, and is how we know we can trust the project. It allows for accountability, so that we can hold the project developer responsible for the impacts and mitigation measures. 

More information about this project in the Gold Standard registry (including verification and monitoring reports) HERE

See our retired credits HERE, HERE and HERE

Sidrap Wind Energy Project

We have now offset another 25,000 ton CO2eq in a Gold Standard certified project! Thank you for making this happen!

This time, your contributions are funding the first ever wind farm in Indonesia. With 30 wind turbines reaching a total capacity of 75 MW, it is also the largest wind farm in all of South East Asia. Through this project, we are supporting Indonesia and its island Sulawesi to see beyond fossil fuels and stimulate both the development of the electricity grids and the national politics in a climate-positive direction.

Indonesia is a country that depends heavily on fossil fuels for its energy production. That in itself is not unique, but given its large population of 264 million, it is remarkable that there has been no wind power at all – until now. The potential for renewable energies in Indonesia is massive, estimated to 14 times their current demand. However, the country has very cheap coal, which sells domestically for less than the global market price, so the economic incentive for renewable energy is weak. In cases like these, the possibility to finance the development with sales of CO2-credits can be one solution to implement green energy projects.

This project has several benefits – Indonesians will now be able to see the positive impact of the wind power for themselves and we are proving the feasibility of this energy source in a local context. The project will also stimulate capacity development, as locals are recruited for the construction and operation of the facility. This breaking of new ground will facilitate for future wind energy projects. Moreover, it puts pressure on the development of the grids to become more flexible and interconnected, so that the electricity can be distributed in an efficient way.

The capital of Indonesia had a major power blackout earlier this year, highlighting the need for grid flexibility and a robust energy system. The politicians in Indonesia have also made a point to set the national target for renewable energy to 23% for 2025, which is twice as much renewables as in 2018 and therefore a significant contribution to the common goal of the Paris Agreement. Impressive! We hope that this is the first of many wind power plants in Indonesia, and are happy to see that there is already another one being built on the same island.

More information about this project in the Gold Standard registry (including verification and monitoring reports) HERE

See our retired credits HERE and HERE