Emissions from different ways to travel

travel emissions from different types of travel

Have you wondered what the climate footprint are for different ways to travel? How big is the difference between flying and taking the train? Now you can use our new travel emissions calculator to see the different emissions from different modes of transportation.

You can easily see that climate emissions from flying and petrol and diesel cars are a lot higher than going the same trip by train or an electric car. The difference between flying and train is quite mad when you start thinking of it.

When you have calculated the travel emissions, please register to offset your emissions as well!

Save the planet one digital meeting at a time

Digital meeting

Why digital meetings? Well, the transport sector is the fastest growing contributor to climate emissions, currently responsible for 14% of the total co2-emissions in the world. It is clear that we need to decrease transport emissions drastically if we are to reach the Paris Agreements goals – to limit global warming to below 2 degrees.

The good news is that there are many simple things we can do to decrease these emissions; things that we as consumers and businesses can act on right now.

One of the easiest things we can do – that not only helps stop climate change but also can save us money and time – is to simply travel a lot less. For companies doing business where meeting people face to face is key, this means swapping from physical to digital meetings.

And even for the ones of us not yet affected by the urgency of the climate crisis, in the current day and age of the Corona virus, digital meetings have never been more relevant.

So how to do good digital meetings?

  1. Choose a good video-service. At GoClimate we use google-meet and whereby.com, but there are lots of other similar services available. Our experience are that these services have improved drastically the last couple of years, coping with disconnects and audio-discrepancies a lot better than good old Skype did 10 years ago.

  2. Secure a good internet-connection. This is a must. There are few things as frustrating as interruptions during the meeting, compromising the flow of the talk and increasing the risk of misunderstandings. One thing that helped us with this aspect was to switch the wifi-channel, so it’s a different channel than the other wifis in our office-building.

  3. Get a high quality camera, microphone and speaker. For meetings with multiple participants this is also a non-negotiable. At GoClimate we were sponsored by Konftel with a brand new C20Ego-kit. We are delighted with the increased quality of video/audio and thereby the improved overall experience of our meetings as a whole. Thank you Konftel!

  4. Make sure everyone can participate on equal terms. This means, even if you have only one person joining on distance, you cannot use a whiteboard that this person cannot see or contribute to. Resolve this by using tools like Miro, the virtual whiteboard! Everyone needs to have equal access.

  5. Partner up! Another system that works well for us when we have only one person remote is to use a Buddy in the real meeting, who ensures that the remote collaborator is effectively included, and uses their computer as the channel for communication (the video connection).

If you want to read more tips to make distance meetings work, Konftel wrote a great guide here.

And if you still need to travel, make sure you at least carbon offset your emissions!

Santa Marta Landfill Gas Recovery

Landfill Gas to Energy project in Chile

Gold Standard

We have now offset another 50,000 ton CO2eq in a Gold Standard certified project!

The project Santa Marta Landfill Gas Capture for Electricity Generation Project is a landfill gas to energy project. The projects involves the collection and utilization of landfill gas for generation of electricity.

Located in one of the most important landfills in the Santiago region of Chile, the project reduces greenhouse gas emissions by capturing, flaring and generating electricity from the methane gas (LFG) produced at the landfill. Methane is a powerful green house gas that is 28-36 more potent than CO2 over a 100 year lifespan.

The Santa Marta landfill spans over 700 acres and receives approximately 1.3 million metric tons of waste every year. The resulting LFG produces 28 MW of renewable energy into the regional grid.

This Gold Standard-certified project includes a plan to continuously support local communities through a nursery and day care in Lonquén, as well as investments in school infrastructure. This simultaneously creates new job opportunities for women staffing these facilities, and allows women working on the Santa Marta Landfill Gas Recovery Project to use the nursery while they are at work.

More information about this project in the Gold Standard registry (including verification and monitoring reports):
https://registry.goldstandard.org/projects/details/689

Our retired credits:
https://registry.goldstandard.org/credit-blocks/details/47973

More pictures:







Methane Digesters in Guizhou Province

Gold Standard

We have now offset another 30,000 ton CO2eq in a Gold Standard certified project!

The project has distributed and installed 18,870 biogas digesters for local households in China. In the digesters, pig manure is treated anaerobically in order to recover biogas. This biogas is then used as thermal energy to replace the coal for cooking and water heating.

The project leads to the reduction of coal consumption and consequently the reduction of carbon dioxide emission. Meanwhile, the recovery and utilization of biogas from biogas digester will reduce Methane emission that would otherwise have been emitted to the atmosphere. Methane is a powerful green house gas that is 28-36 more potent than CO2 over a 100 year lifespan.

The project covers 27 townships at Hezhang County, Guizhou Province of China. 

More information about this project in the Gold Standard registry (including verification and monitoring reports): https://registry.goldstandard.org/projects/details/449

Invoice: Invoice EMS-1441

Retired credits:
https://registry.goldstandard.org/credit-blocks/details/42264
https://registry.goldstandard.org/credit-blocks/details/42265
https://registry.goldstandard.org/credit-blocks/details/42266













 

Supporting Efficient Cookstoves in Rwanda

Gold Standard

We have now offset another 20,000 ton CO2eq in a Gold Standard certified project!

By distributing cookstove technology to communities in Rwanda, this project benefits the environment by significantly reducing CO2 intense fuel consumption. Health conditions inside homes are improved due to the presence of less indoor smoke, and families can spend less time collecting wood fuel and more time with their families.

Biomass, principally firewood and charcoal, holds huge importance in Rwanda, accounting for a significant proportion of energy consumption. Biomass is often the predominant source of energy for cooking and water boiling, especially in rural areas. Cooking is generally carried out on thermally inefficient traditional devices and produces large amounts of smoke and indoor air pollution.

The replacement fuel-efficient stove will lead to a significant reduction in the annual usage of biomass for users. The improved stove has been designed to balance efficiency, safety, cost, stability and strength with a focus on using locally available materials.

By reducing the consumption of non-renewable wood and providing cookstoves with fuel savings, this project reduces the amount of greenhouse gas emissions into the atmosphere. A decrease of deforestation has a positive impact on biodiversity. Households save money by having less fuel requirements for cooking the same amount of food and health is improved through the reduction of indoor air pollutants from cleaner cookstoves. The project also generates employment and income for people via the distribution and maintenance of the stoves, as well as training and employing community education staff.

More information about this project in the Gold Standard registry (including verification and monitoring reports): https://registry.goldstandard.org/projects/details/155

Invoice: invoice Go Climate Neutral

Retired credits:
https://registry.goldstandard.org/credit-blocks/details/39225
https://registry.goldstandard.org/credit-blocks/details/39226
https://registry.goldstandard.org/credit-blocks/details/39227

The Carbon Footprint of Servers

We have done some research about the carbon footprint of running cloud, data center and on-premise servers.

Our goal has been to find a way to estimate the carbon footprint from the servers we need to calculate emissions for in our business carbon footprint calculator. We wanted to find a good approximation of the emissions without forcing the business to enter everything about the server-model and kWh-consumption they use in our calculator.

This is an attempt to summarize our findings.

PS. Are you looking to lower your carbon footprint and contribute to a more sustainable world? We would love to help! Take responsibility for the carbon footprint of your lifestyle now!

We quickly realized that just requiring the number of servers running is a too rough measurement, often resulting in estimations 5-10x lower or higher then a precise calculation. So we needed to require more parameters from our business users to not be too off in our approximation.

After some experimenting and reading we found that there are two factors that both are fairly easy to find out and also make a big impact on the carbon footprint of servers, if the electricity used is green or not and if the servers are in the cloud or not.

Therefor we divide our calculations of the carbon footprint for servers into four categories. More categories could easily be constructed to achieve more precise estimations, but as stated earlier, our goal was also to make this an as easy as possible thing to find out for the business calculating the footprints.

The four categories we ended up with are:

  1. Cloud server using 100% green electricity
  2. Cloud server using non-green electricity
  3. On premise or data center-server using 100% green electricity
  4. On premise or data center-server using non-green electricity

To find out which category to use, you need to know if the electricity your servers are using is 100% green (or if the electricity not green is being offset in a credible way) and if your servers can be considered running in a cloud.


How do I know if the electricity our servers are using is 100% green?

With green electricity we mean fossil free electricity, so both renewable energy sources and nuclear energy are considered green – and are in our calculations considered having a zero climate impact. This is not 100% true since both renewable sources and nuclear sources have a carbon footprint from construction and maintenance, but the climate impact are negligible in comparison with electricity from fossil sources.

Depending on where your servers are located, there are different ways of finding out if the electricity your servers use is green:

  • On premise-server – check your electricity contract or contact your electricity-provider
  • Data center-server – check your contract or contact your provider
  • Cloud server – this is a bit more tricky. But if you want the short answer per provider:
    • Google Cloud – 100% green
    • Microsoft Azure – 100% green
    • Amazon AWS – Non green electricity for all locations except US West (Oregon), Europe (Frankfurt), Europe (Ireland), GovCloud (US-West), Canada (Central). More locations might appear in the future here: https://aws.amazon.com/about-aws/sustainability/
    • Oracle – Non-green except for in the UK
    • IBM – Non-green
    • Alibaba – Non-green

Source and more thorough examination of the cloud providers can be found here: The State of Data Center Energy Use in 2018

How do I know if my servers are in the cloud?

This might sound like an easy question, but there are many local providers that have smaller cloud-like solutions that might be as energy effective and utilize servers as good as the larger ones.

So the question you should ask yourself here – if you are unsure if your servers can be considered being in the cloud or not – is if your provider can utilize servers about as effective as the larger providers and if they can have the same energy efficiency as the larger ones.

The difference between the carbon footprint of servers running in large cloud providers and not can be big. According to the studies we have found on this:

We have decided to apply a simple factor of 0.5 for the energy consumption and server utilization of servers in the cloud. Amazon AWS claims a reduction of 84% in the amount of power required, but since we don’t have data for other providers we prefer to be bit more conservative here.

The energy consumption from manufacturing and use

In our carbon footprint business calculator we have chosen to use data from a standard 2019 R640 Dell server. This is deemed as a high end but not unusual server being bought 2019. An exact server model would give more precise data here, but we decided that it was not reasonable to expect people using our business calculator to know the exact name of the servers if the have been bought by the business, and in the cloud it’s close to impossible to know exactly what hardware model your server is run on anyway.

The data sheet for the server we chose can be found here: https://i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-poweredge-r640.pdf

The server is consuming 1760.3 kWh / year and has a manufacturing climate impact of 320 kg CO2e/year, assuming a four-year life span.

If you are doing a calculation of your own and you know exactly what kind of server you or your provider uses, you should use those numbers instead.

The Four Carbon Footprint categories

We have used the Nordic Residual Energy mix as the factor for CO2e emissions per kWh. The factor is 0,25076 CO2e / kWh. The reason for us using this is that most business using our calculator are expected to be in the Nordics.

So if we use these number and assumptions from above:

  • Emissions from production of servers for use on premise: 320 kg CO2e/year
  • Emissions from production of servers for use in cloud (since 50% is manufactured for use in cloud): 160 kg CO2e/year
  • Emissions from green power consumption: 0 kg CO2e/year
  • Emissions from non-green consumption for premise power or self managed servers : 1760,3 kWh / year * 0,25076 CO2e / kWh = 441 kg CO2e
  • From non-green cloud power consumption : 1760.3 kWh / year * 0,25076 CO2e / kWh * 0,5 = 221 kg CO2e

This results in these factors four our four categories:

  1. Cloud server using 100% green electricity: 160 kg CO2e / year and server
  2. Cloud server using non-green electricity: 381 kg CO2e / year and server
  3. On premise or data center-server using 100% green electricity: 320 kg CO2e / year and server
  4. On premise or data center-server using non-green electricity: 761 kg CO2e / year and server

Please comment to this post if you have any questions or comments!

If you want help with doing a GHG-emissions calculation for your business, feel free to use our carbon footprint business calculator or contact us at [email protected] – and if you want to start living a climate neutral life, join us today!

This blog post was updated on 2020.06.04 to consider more recent emission factors.

Flight Emissions API

To combat climate change, easy access to data about our emissions are necessary. One of the largest sources of emissions for many individuals is the emissions from flying.

The GoClimate Flight Emissions API calculates an approximation of the amount of CO₂-equivalents a flight emits per person.

We wanted to build the GoClimate.org Flight Emissions API to educate people searching for flights what the environmental impact is per person, and thereby enabling people to choose less environmentally damaging flights or ways of travel.

Read more about our Flight Emissions API here.

Read more about how our flight CO2 emission calculations are made here.

Contact us and tell us more about your use case if you want an API-key.

Second Investment in Godawari Green Energy Solar

Gold Standard We have now offset another 25,000 ton CO2eq in a CDM and Gold Standard certified project! Located in northern India, this large-scale, 50 MW-capacity solar thermal power project generates almost 119,000 MWh for India’s Combined Regional Grid, displacing electricity sourced from the burning of fossil fuels to reduce emissions and contribute to regional sustainable development. India is the world’s second largest country by population, beaten only by China – and it is rapidly catching up. As its developing economy strengthens further and rapid population growth continues, India’s energy needs are rising. While the share of renewables in India’s energy mix is growing, coal still accounts for over half of its electricity production. Located in Jaisalmer District in North India’s Rajasthan State, this large-scale solar thermal power project helps satiate India’s growing energy demands. The 50 MW-capacity solar thermal plant uses parabolic trough technology to generate almost 119,000 MWh of clean energy for the Combined Regional Grid annually, further diversifying India’s electricity mix away from fossil fuels. On top of supplanting fossil fuels with clean electricity to reduce emissions, the project proponent commits 2% of Carbon Emission Reduction (CER) sales to community welfare and sustainable development projects. The social benefits of this include local employment opportunities that alleviate regional poverty, as well as better roads and improved basic infrastructure. The project also contributes to the transfer of environmentally sound, state-of-the-art thermal solar power generation technology in India, and encourages further technology development. You can read more about last time we invested in this project here. More information about this project in the Gold Standard registry (including verification and monitoring reports): https://registry.goldstandard.org/projects/details/1705 More information on the UN-site here: https://cdm.unfccc.int/Projects/DB/KBS_Cert1348206450.84/view Certificate: Certificate 25000 Godwari See more pictures of the project here: https://www.gettyimages.co.uk/search/2/image?events=170700953&family=editorial&sort=best#

Carbon Offset your Company

To carbon offset a company is to take responsibility for the carbon emissions the company produces – and by doing that being part of stopping climate change.

How do I get started?

There’s two alternatives if you want to get started with your carbon offsetting with us at GoClimate:

  • Standardized calculations: The standard to calculate carbon emissions from a company is to follow the GHG-protocol (GHG is for Green House Gases). This is something all larger companies should do since it gives you a tool to see how large different emissions are and thereby a possibility to decrease emissions more effectively. Since it’s a standard it also makes it possible to compare your emissions with other companies in the same industry. If you want help with this, contact us at [email protected]
  • Simple calculation based on number of employees: The cons with GHG-calculations is that they are rather time consuming and therefore costly. To get more companies to take responsibility for their climate footprint we also offer a simpler way to take responsibility for your emissions. It’s based on the mean emissions for one person (11 tonnes CO2eq in Sweden) x a safety factor to be sure we don’t underestimate the emissions (we use a factor of 2) x the number of employees in your company. You can do the calculation here and contact us for more info: https://www.goclimate.com/business

It’s easy to take responsibility for your emissions and to be a part of the solution of climate change. It also has lots of other advantages for the region where the climate project is supported and for your company.

Interested? Questions? Reach out to us at [email protected]!

Nanyang Danjiang River Solar Cooker Project

We have for the second time invested in the Gold Standard-certified CDM-project Nanyang Danjiang River Solar Cooker Project and contributed to preventing 15 000 ton of CO2 from reaching the atmosphere. Thank you so much everyone for contributing to a cleaner and greener future!

The Nanyang Solar Project improves the indoor hygiene and living conditions of 48,000 rural households in one of the poorest regions in China. By replacing traditional coal-fired cooking stoves with clean solar cookers – CO2-emissions are reduced and the quality of life of 48,000 rural household are improved.

In the rural area of Xichuan County, Henan Province it is estimated that 76.4% of local households use coal-fired stoves as the main energy source for their daily lives. Not only do these coal stoves create harmful carbon emissions, but the large amount of wood and coal fuel they require is in dwindling supply.

The Nanyang Danjiang Solar Cooker Project enables these rural households to substitute traditional coal stoves for a solar energy alternative. 48,000 of these stoves have been distributed to seven towns in the Xichuan County, Henan Province. They are 50% more efficient than traditional coal stoves and, with an energy capacity of 876.5 W per unit, displace the CO2 that would have been generated by the fossil fuel consumption of coal fires.

With access to solar cooker methods, local residents now have a cleaner, practical and more efficient way to meet the energy demand of their daily cooking. By switching to solar power, health issues related to the excess soot and indoor smoke-pollution of coal fires have been abated. The solar cookers are distributed and maintained by the project for free, and because they no longer have to purchase coal fuel, villagers can use the money saved to buy things that improve their standard of living.

More information on the UN-site: https://cdm.unfccc.int/Projects/DB/TUEV-RHEIN1335494252.18/view

More information on the Gold Standard Registry: https://registry.goldstandard.org/projects/details/1611

Certificate of transaction: accountStatement

Invoice: invoice nanyang

Sustainable Development Goals this project contributes to:

1,728,061 people benefit from the implementation of this project. This frees up household incomes for the improvement of living standards.


30 jobs are expected to be created by the project implementation, directly contributing to the economic growth of the region.



48,000 solar cookers are distributed, facilitating
sustainable cooking practices
across 7 rural communities.



105 138 tonnes CO2eq removed from the atmosphere
yearly, directly contributing to climate change mitigation.